Automated Finite Element Model Updating of the UCF Grid Benchmark Using Multiresponse Parameter Estimation
نویسندگان
چکیده
Structural Health Monitoring (SHM) using nondestructive test (NDT) data has become very promising for finite element (FE) model updating, model verification, structural evaluation, and damage assessment. This research presents a multiresponse structural parameter estimation method for the FE model updating using data obtained from a nondestructive test on a laboratory bridge model. Having measurement and modeling errors is an inevitable part of data acquisition systems and finite element models. The presence of these errors can affect the accuracy of the parameter estimates. Therefore, an error sensitivity analysis using Monte Carlo simulation was used to study the input-output error behavior of each parameter based on the load cases and measurement locations of the nondestructive tests. Given the measured experimental responses, the goal was to select the unknown parameters of the FE model with high observability that leads to creating a well-conditioned system with the least sensitivity to measurement errors. A data quality study was performed to assess the accuracy and reliability of the measured data. Based on this study, a subset of the most reliable measured data was selected for the FE model updating. The selected subset of higher quality measurements and the observable unknown parameters were used for FE model updating. Three static and dynamic error functions were used for structural parameter estimation using the selected measured static strains, displacements, and slopes as well as dynamic natural frequencies and associated mode shapes. The measured data sets were used separately and also together for multiresponse FE model updating to match the predicted analytical response with the measured data. The FE model was successfully calibrated using multiresponse data. Two separate commercially available software packages were used with real-time data communications utilizing Application Program Interface (API) scripts. This approach was efficient in utilizing these software packages for automated and systematic FE model updating. This method is applicable to full-scale structures and can be used for bridge model validation and bridge management.
منابع مشابه
Finite element model updating of the UCF grid benchmark using measured frequency response functions
A frequency response function based finite element model updating method is presented and used to perform parameter estimation of the University of Central Florida Grid Benchmark Structure. The proposed method is used to calibrate the initial finite element model using measured frequency response functions from the undamaged, intact structure. Stiffness properties, mass properties, and boundary...
متن کاملModel Updating of UCF Benchmark Model Using PARIS
This paper presents a structural parameter estimation technique for finite element model updating for the bridge benchmark model at the University of Central Florida (UCF) and the anticipated nondestructive tests. The purpose of the benchmark problem is to evaluate the reliability of damage assessment methodologies commonly used in structural health monitoring of the highway bridges. Simulation...
متن کاملFinite element model updating of a geared rotor system using particle swarm optimization for condition monitoring
In this paper, condition monitoring of a geared rotor system using finite element (FE) model updating and particle swarm optimization (PSO) method is onsidered. For this purpose, employing experimental data from the geared rotor system, an updated FE model is obtained. The geared rotor system under study consists of two shafts, four bearings, and two gears. To get the experimental data, iezoel...
متن کاملAutomated finite element model updating of full-scale structures with PARameter Identification System (PARIS)
This paper presents a software framework, PARIS (PARameter Identification System), developed for automated finite element model updating for structural health monitoring. With advances in Application Programming Interfaces (API) for modern computing, the traditional boundaries between different standalone software packages hardly exist. Now complex problems can be distributed between different ...
متن کاملA NEW APPROACH BASED ON FINITE ELEMENT MODEL UPDATING FOR STRUCTURAL DAMAGE IDENTIFICATION
In this study, the finite element model updating was simulated by reducing the stiffness of the members. Due to lack of access to the experimental results, the data obtained from an analytical model were used in the proposed structural damage scenarios. The updating parameters for the studied structures were defined as a reduction coefficient applied to the stiffness of the members. Parameter v...
متن کامل